A few months ago, I went to a creative origami lunchtime session organised by some lovely people at $WORK
. I’d done origami a bit when I was younger, but mostly just frogs and cranes, which have since helped me while away the hours when invigilating exams. However, at this lunchtime session I was shown how to make modular origami. This involves making lots of (generally quite simple) origami parts, and then slotting them together to make larger structures.
I went home with a simple 12-unit Sonobe ball that afternoon and was very pleased with myself.
Things have rather escalated from there.
Between running some of these lunchtime sessions myself now, and being asked on several occasions on Twitter about how I make the pretty things I keep tweeting, I thought it’d be useful to put together a quick guide (or a link-farm, at least)..
Sonobe units are very easy to fold, quite forgiving, and can be used to make a cube (6 units), a cumulated octahedron (12 units), a cumulated icosahedron (30), and a kind-of truncated icosahedron (90, basically a spiky football). They’re a pretty good introduction to the general principles:
The 30-unit ball has the symmetries of an icosahedron (or dodecahedron). Once you’ve learnt how to construct that object in Sonobe modules, you’ve essentially learnt how to construct any 30-unit modular origami ball: they mostly involve slotting 30 edge-units into groups of three to form the 12 pentagonal faces of a dodecahedron (or equivalently/alternatively, slotting them into groups of five to form the 20 triangular faces of an icosahedron – the difference is mostly one of perspective). There are lots of variations on the Sonobe unit you can (re)invent, by adding back-folds that expose the other side of the paper, or that make the tabs narrower than the pockets, giving a more intricate look. Although the 90-unit structure is quite stable, the next one up (270 units) tends to sag under its own weight over time, but by that point it felt like a right of passage to make one. The Sonobe units can also be assembled inside-out to make inwardly cumulated polyhedra… …and they can also be assembled in pairs and then assembled into a spiked pentakis dodecahedron... …and other structures. The next unit I tried was the Penultimate edge unit (attributed to Robert Neal), which can be used to make a wireframe dodecahedron, as demonstrated by Matt Parker, the stand-up mathematician. Other variations of this subunit can be used to make pretty much any other wireframe polyhedron. Thomas Hull’s PhiZZ edge unit makes similar wireframe structures, but the modules fit together more tightly and the resulting structures are much more robust than you get with the penultimate modules. You can also make colour-change variants using the technique shown in Lewis Simon’s decoration boxes. For structures based on dodecahedra/icosahedra and made from edge-units, you can always get away with using just three colours and never have two of the same colour pieces touching. This is because you can draw a Hamiltonian circuit on a dodecahedron: that is a path from vertex to vertex that only visits each vertex once, and which comes back to where it started. You can represent this in 2D on a Schlegel diagram. If you colour alternate edges of the Hamiltonian circuit in two of your chosen colours, and the rest of the edges in the third, then you’ll avoid having any colour-clashes. I only learnt this after I started making these structures, so not all of them have this optimal colouring! The same 3-colour rule is true for the other Platonic solids, and also for the truncated icosahedron.Francesco Mancini’s star-holes kusudama uses a similar module to the PHiZZ, but with a little back-bend that gives a nice 3D star effect. This one is a dodecahedron-shaped (30 units), but a 90-unit truncated icosahedron should also be possible.
UPDATE: yes, it is possible 🙂 Lewis Simon and Bennett Arnstein’s triangle edge unit can be used to make very nice patchtwork tetrahedra, octahedra and icosahedra. They’re a bit fiddly to put together but are very robust once constructed. A similar patchwork effect for the dodecahedron can be achieved with M. Mukhopadhyay’s umbrella module; Sonobe units can be used to make analogous Battenberg-cake style cubes. The simple isosceles triangle unit (attributed variously to M. Mukhopadhyay, Jeannine Mosely and Roberto Morassi) can be used to make small and great stellated dodecahedra. The small stellated dodocahedron is particularly pleasing and makes a fairly robust decoration if made of foil-backed paper. The great stellated dodecahedron can be made from the same subunit, but is tricker to construct because a tab has to curl around into a pocket that is partly inside the next tab round. I used needle-nosed forceps to construct this, and I’m still not terribly happy with the result.The opposite is true for Paolo Bascetta’s star module, which makes a great great stellated dodecahedron, but a rather *eh* small stellation. This module needs duo paper (i.e. paper that is coloured on both sides) for best effect.
Dave Mitchell’s Electra module can be used to make a icosidodecahedron: it’s unusual in that each module corresponds to one vertex of the structure: the edge units described up to this point combine together to make each vertex. I’m not that happy with my Void kusudama (Tadashi Mori): I should have used duo paper, but it was really tricky to put together. Maybe one day. It’s one of the few structures here that is back to the original octahedral/cubic 12-unit structure. I’m not sure the 30-unit version would be stable. UPDATE: Yeah, I don’t think the 30-unit version is do-able. I think the units are too wide to actually fit into an icosahedron: I couldn’t even manage it with glue, so I don’t think it’s just a stability issue. However, I did do a better 12-unit version, with duo paper and a little reverse fold on the outer edge to expose the second colour properly, which I’m quite pleased with: Tomoko Fusè’s little turtle modules are extremely flexible: they can be used to make pretty much any polyhedron that is made of regular polygons. However, because the flaps are only one paper layer thick, they don’t fit together terribly tightly, so I’ve only found them robust enough to make smaller structures without the help of glue. However, with glue, I’ve made a rhombicosidodecahedron, which is cool because it is built of pentagons, triangles and squares (all of the polygons found in the Platonic solids)… …and also a pair of snub-cubes, which are even more interesting as the snub-cube has two non-superimposable mirror images, like hands, amino acids and amphetamines. I found Maria Sinayskaya Etna kusudama in Meenakshi Mukerji’s Exquisite Modular Origami book. It’s a really pretty model, and robust once it’s assembled, but it can be a bit fally-aparty during construction: I used very small clothes pegs to hold it together as I was making it. Meenakshi Mukerji’s compound of five octahedra (inspired by Dennis Walker) is also a bit fally-aparty, but I like it as – unlike many of these models – it genuinely is the polyhedron so-named, rather than something where you have to squint at the holes in the wire-frame and imagine faces there. The five intersecting tetrahedra are actually a lot easier to make than they look. Francis Ow’s 6-degree modules themselves are easy to fold, and the vertices are a lot more robust than they might appear. The most difficult bit is getting the modules interlinked in the right way. I’ve managed it twice, but only whilst staring at the YouTube video and performing assorted “purple = green” gymnastics in my head. Michał Kosmulski’s page has lots of lovely illustrations, instructions and inspirations. I found Tung Ken Lam’s blintz icosadodecahedron (also credited as Francesco Mancini’s UVWXYZ intersecting planes model) there. It has the same symmetry as the Electra icosadodecahedron above, but you can see the six intersecting pentagons more clearly. Both have the same underlying structure as the Hoberman sphere – that expanding/contracting plastic stick model thing beloved of science fairs. This last one is a bit of a cheat as (in theory, and mostly in practice too) the structures above are held together by nothing more than friction. Valentina Gonchar’s revealed flower star kusudama has to be glued, which is kind-of cheating, but I couldn’t resist as it is two structures in one: Things I’d still like to do:- Build a much larger PhiZZ ball (270 units): this would be useful for demonstrating the structures of viral capsids. UPDATE: Done!
- I’ve not yet found a good great dodecahedron model: they exist on Pintrest, but I’ve yet to find any instructions for one. UPDATE: Done! (Couldn’t for the life of me work out how to do 3-colouring, but module is from Saku B, recommended by Nick in the comments below)
- I have lost wherever it was I found the instructions for this inwardly cumulated rhombic triacontahedron: I’d quite like to rediscover them so I can credit the inventor! UPDATE: this isn’t where I originally saw it, but AresMares by Gewre has a video tutorial, and a kind commenter has let me know the designer is Silvana Betti Mamino – thank you!
- Invent my own module 🙂
33 comments
Skip to comment form
Amazing and inspiring! You have blown my mind. I’m going to go make some phizz units with the stripey color changes. I wish I’d thought of that!
Thanks for sharing all this neat stuff, it’s given me a lot to try out. If you’re curious, I have a module that’s morphologically similar to the Sonobe unit, that I was taught by a Japanese woman who went to my church when I was a child. It’s not a huge revelation but it creates an interesting look if you’re looking for something new to mess with.
Author
I _am_ curious – do you have a folding diagram?
Interestingly, I also have a similar shape to the Sonobe unit, which I learned at a Japanese summer camp!
These are so beautiful, thanks for sharing! Unfortunately, I have been tearing my hair out trying to figure out how to make a few of these designs, specifically the triangular tetrahedrons and the rhomboid/kite-like octahedron. I’ve searched the internet and I’ve been to the library to check out several origami books, but I cannot seem to find a way to make them! I’ve even tried to deconstruct them on paper to try and see how the units fit together, but that is a mess best left forgotten.
In any case, here’s a url that has screenshots of the models that I’m having trouble with, if you could help clarify how to make them I would be most appreciative!
https://imgur.com/a/Yv1WsLo
The first one I designated the kite-like octahedron, the second the simple triangular tetrahedron, and the third the complex triangular tetrahedron.
Author
They’re both made using the same triangle edge module as is used to make the patchwork icosahedron in the same image. When you make the icosahedron, you arrange the 30 modules in groups of fives around each vertex, but for the octahedron, you arrange 12 modules in groups of fours around each vertex – same technique as for an octahedron made of sonobe modules. The tetrahedron requires just 6 triangle edge modules, arranged in threes – it’s quite difficult to get all the bits tucked in, but not impossible.
Author
The very simple tetrahedron I think I made from just two modules tucked into each other, but I can’t remember off-hand which kind. It may just have been two sonobes, possibly one left-handed, and the other right-handed? I’ll take a look tomorrow if I have time.
I have recently come up with a variant on the sonobe model that gives a module easier and cleaner to assemble for the inverted icosahedron build, and it keeps all the versatility of the regular sonobe . I don’t know if its original though. I could send you the instructions if you want
(I still call BS on the bascetta star. He supposedly created the model in 2007, but the model was taught to me in spring 2005…)
Author
Apologies for the extremely late reply – I would be interested in the sonobe variant if you’re still prepared to share?
Id love to see this design pls
I AM SO HAPPY! I FINALLY COMPLETED THE INWARDLY CUMULATED POLYHEDRA!
Author
🙂
Your work is really amazing!
I’m trying to work my way through the Sonobe-Family from 6 to 270 with 3 different colours. The 6, 12 and 30 are possible with 3 colours. But I’m not sure if the 90 and 270 are also doable with 3 colours. I have built the 9, but it’s not working for me with 3 colours.
I would like to know if you could tell me if it is even possible to make a 90 and 270 Sonobe-Ball with 3 different colours. And is there a formula or something like that to answer my question? And if it is possible, is there a trick in assembling it?
Greetings
KL
Author
You can definitely use just 3 colours for the 30 (‘icosahedron’) and 90 (‘truncated icosahedron’) using the Hamiltonian circuit diagrams – there’s a link to the 90 unit version in the post above. I don’t know whether it is possible for the 270. It’s much easier to actually make a perfect 3-colour model with the PhiZZ units than with the Sonobe – the Schlegel diagrams shown in the post above re much easier to interpret because PhiZZ gives you a wire-frame look that’s easy to map onto the Schlegel diagram. With Sonobe, you have to try much harder to visualise where the edges actually are. It’s definitely do-able, but I would suggest trying a 3-colour 90 PhiZZ first to help get your eye in.
Is there a way to make a ball with more than 270 units?
I have already built (and glued) the 270 unit stucture.
But, I was wondering if instead of the 5-6-6-5 peak formation, will a 5-6-6-6-5 formation work as well?
And if so, how many pieces are required?
Yes, this should be possible, have a look at Tom Hull’s video explaining how to make larger Buckyballs using his PHiZZ unit: https://youtu.be/9GmSkfBt8fo (although this applies generally and not just to using his PHiZZ unit).
Author
The key problem I’ve had with structures of more than 90 units (and even some of those) is that they simply aren’t mechanically strong enough to withstand their own weight. But in theory, you can construct arbitrarily large structures with 12 pentagons and [insert large number] hexagons: viral capsids use this strategy.
Great work Polypompholyx, you certainly seem to be enjoying yourself exploring the world of geometry through origami 🙂
I think the Compound of Five Octahedra is actually a design by Meenakshi Murkerji, assuming it is 30 and not 60 pieces?
Also, your last model is a design by Silvana Betti Mamino and I believe is often called Silvana’s Star Ball. HTH 🙂
Author
Thank you! I’ve corrected and credited above now.
Hey, awesome post! There is a origamist on YouTube named Saku B who has some brilliant original models, two of which I think you will be particularly interested in:
1. Great Stellated Dodecahedron alternative module (it has a unique interlocking mechanism and is easier to assemble than Mukhopadhyay’s version): https://www.youtube.com/watch?v=T1EYqBg3K14
2. Great Dodecahedron. Quite an innovative module: https://www.youtube.com/watch?v=reMa6ANx3ZM
Another great one is the open faced dodecahedron (https://www.youtube.com/watch?v=AiayzMYftzw), which is incredibly sturdy and satisfying to fold. Personally, I find the ratio between the edge width and face hole size on this model to be the most visually appealing of all of the various windowed dodecahedron models that I’ve seen.
Finally, here’s a playlist of all of his modular works: https://www.youtube.com/playlist?list=PLmaBKtMCF71HZ_OMce0gq_cS90hdvazgT
Author
Those are great – thank you. See what you mean about the interesting ‘double locking’ in the GSD. Sorry for the long delay in replying. I’ll give the GD a go this weekend!
Hello.
Your models are beautiful.
Would you grant me permission to use the picture of the icosahedron for a divulgation article I’m preparing about viruses? I can send you the link once it’s done, so you can give it a look (it’ll be in Spanish, though!)
I’ll be looking forward to your reply.
Thanks!
Mauricio Maldonado
Author
Yes, absolutely – all images here are CC-BY-SA, so you can use them as long as you say where they came from:
hey, i was wondering if 810 units would be mathematically possible for your first sonobe. if so, i might just make one. hit me back
Stumbled upon this while trying to show my friend what they should do with an accidental purchase of sticky notes that turned out to not be sticky. This is all beautiful! And the color arrangements nicely satisfy my own obsessive tendencies with coloring modular origami. Good find.
oh my god you’re a genious
could u teach me plz?
Nice blog! Keep it up. Fefgus
This is so cool! I really want to make the rainbow 270 unit you showed, could you explain what the planning was, and what kind of fold it is? It looks super cool and I want to show off to my friends 😀
Author
It’s just sonobe with a little back-fold to expose the underside of some duo-coloured paper. The planning was basically just making about 30 units each of 9 colours in rainbow sequence and then adding them in concentric circles from the red end.
Did you ever try the 120 sonobe? It’s one of my favorite sizes, and it’s only a bit bigger than the 90 (I actually figured the 120 out before the 90). I find it holds together really well.
The Hamiltonian path coloring is super cool, and I used it to make a model for my math teacher, who really liked it, so thanks 🙂
This is a super cool post!
Wow! I didn’t know that you could upgrade a already-amazing-origami even more!
You can upgrade it even MORE
I know how to make kind of sonobe but more designs